

CircuitSolver® Union Assembly and Viega ProPress® System (CSUA-PP)

[Thermostatic balancing valve with integrated union body, ball valves and ProPress Ends] **SUBMITTAL**

JOB:	ORDER NO:	DATE:
	SUBMITTED BY:	DATE:
UNIT TAG:	APPROVED BY:	DATE:
CITY:	ENGINEER:	BUILDING TYPE:
STATE:	CONTRACTOR:	CONSTRUCTION TYPE:
COMPLETION DATE:		

DESCRIPTION

The CircuitSolver® Union Assembly's primary component is the CircuitSolver® which is a self-acting thermostatic recirculation valve that automatically and continuously maintains the end of each domestic hot water supply line at the specified water temperature. Since the CircuitSolver® responds to water temperature and controls flow to the return, it eliminates the need to manually balance the system.

DIMENSIONS

Item No.	Part Number	Description	Qty	
1	258-20X100-XXX	½" CIRCUITSOLVER THERMOSTATIC BALANCING VALVE WITH INTEGRATED UNION	1	
2	92-160	BALL VALVE, ½" MxF, LF	2	
3	92-090	ADAPTER, ½" NPT x ½" ProPress	2	

l	Item No.	Part Number	Description	Qty
	1	258-30X100-XXX	34" CIRCUITSOLVER THERMOSTATIC BALANCING VALVE WITH INTEGRATED UNION	1
	2	92-158	BALL VALVE, ¾" MxF, LF	2
	3	92-091	ADAPTER, ¾" NPT x ¾" ProPress	2

Item No.	Part Number	Description	Qty
1	258-40X100-XXX	1" CIRCUITSOLVER THERMOSTATIC BALANCING VALVE WITH INTEGRATED UNION	1
2	92-170	BALL VALVE, 1" MxF, LF	2
3	92-092	ADAPTER, 1" NPT x 1" ProPress	2

*ALL COMPONENTS ARE LEAD FREE

*ALL COMPONENTS ARE LEAD FREE

*ALL COMPONENTS ARE LEAD FREE

		Diame	eter (D)	Leng	th (L)	Heigl	nt (H)	We	ight		C _v		Max. P	ressure	Max.	Temp.
Model No.	NPT	IN	MM	IN	ММ	IN	MM	LBS.	KG	OPEN	CLOSED	DESIGN	PSIG	BAR	°F	°C
CSUA- ½ -XXX-PP	1/2"	1.8	46	10.1	257	1.8	46	2.3	1.0	1.3	0.2	0.60				
CSUA- ½ -XXX-CV1-PP	1/2	1.0	40	10.1	257	1.0	40	2.3	1.0	1.3	0.2	0.80				
CSUA- ¾ -XXX-PP	3/4"	2.0	51	11.8	300	2.0	51	3.7	1.7	1.8	0.2	0.85	200	14	250	121
CSUA- ¾ -XXX-CV1-PP	3/4	2.0	31	11.0	300	2.0	31	3.7	1.7	1.0	0.2	0.85	200	14	250	121
CSUA-1-XXX-PP	1"	2.5	64	13.1	3333	2.3	59	5.9	2.7	3.3	0.2	1.57				
CSUA-1-XXX-CV1-PP	'	2.5	04	13.1	3333	2.3	59	5.9	2.7	3.3	0.2	1.57				

Model Number Selection

XXX refers to the desired closing temperature. When the water temperature drops below this point the CircuitSolver® will begin to open, allowing water to easily enter the return line. For example, if you want 120°F desired return temperature and the CSUA-PP is to be installed on a 3/4" line, the model number would be CSUA-3/4-120-PP. To add optional check valve insert -CV1 directly after the temperature designation in the model number. Ex. CSUA-3/4-120-CV1-PP

FLOW RATE CALCULATION USING "Cv" FACTOR				
$GPM = C_v \sqrt{\Delta P}$	$C_V = \sqrt{\frac{GPM}{\Delta P}}$	$\Delta P = \left[\frac{GPM}{C_{V}} \right]^{2}$		

Features and Benefits -100% factory tested drip tight operation -Snap fit design, no retainer needed

- -Extra-low head loss and low cracking pressure
- -External O-ring in groove

Certifications

-ANSI/ NSF 61

ITEM	MATERIAL
Сар	Glass filled Noryl
Guide	Glass filled Noryl
Plunger	Glass filled Noryl
Lip Spring	EPDM rubber
Spring	Stainless Steel AISI 301
O-ring	EPDM rubber

TYPICAL SPECIFICATION

- I. Furnish and install CIRCUITSOLVER® UNION ASSEMBLY as indicated on the plans. CIRCUITSOLVER® UNION ASSEMBLY shall be self-contained and fully automatic without additional piping or control mechanisms. Thermostatic valve shall be a CIRCUITSOLVER® as manufactured by ThermOmegaTech®, Inc., or equivalent.
 - A. CIRCUITSOLVER® shall regulate the flow of recirculated domestic hot water based on water temperature entering the CIRCUITSOLVER® UNION ASSEMBLY regardless of system operating pressure. As the water temperature increases the valve proportionally closes dynamically adjusting flow to meet the specified temperature.
 - 1. CIRCUITSOLVER® never fully closes, even at the desired set point. There is always sufficient bypass flow back to the recirculating pump to prevent overheating or "dead heading" of the pump.
 - 2. CIRCUITSOLVER® is set at the factory for the desired return temperature. No field adjustments needed. Several temperature set points are available.
 - 3. CIRCUITSOLVER® UNION ASSEMBLY shall be available in $\frac{1}{2}$ ", $\frac{3}{4}$ ", & 1" with Viega ProPress adapters at both ends.
- II. All components in the CIRCUITSOLVER® UNION ASSEMBLY are made with lead free materials. The major components that make up the CIRCUITSOLVER® are constructed of type 300 series SS.
 - A. CIRCUITSOLVER® UNION ASSEMBLY shall be rated to 200 PSIG maximum working pressure.
 - 1. CIRCUITSOLVER® UNION ASSEMBLY shall be standard tapered female pipe thread, NPT, with ProPress adapters at both ends.
 - B. CIRCUITSOLVER® UNION ASSEMBLY shall be rated to 250°F (121.1°C) maximum working temperature.
 - C. CIRCUITSOLVER® UNION ASSEMBLY shall be NSF/ANSI/CAN 61 or 372 certified.
 - D. Thermal actuator shall be spring-loaded and self-cleaning, delivering closing thrust sufficient to keep orifice opening free of scale deposits.
- III. Installation of CIRCUITSOLVER® UNION ASSEMBLY shall be made by qualified tradesmen. Install CIRCUITSOLVER® UNION ASSEMBLY in each domestic hot water return piping branch beyond last hot water device in that branch.
 - A. Provide suitable strainer as indicated in piping detail shown on the drawings.
 - B. Provide suitable access panel as required in non-accessible ceilings and walls.
 - C. Pay close attention to flow arrow, especially with valves that have an integrated check valve.

